Mfa4, an Accessory Protein of Mfa1 Fimbriae, Modulates Fimbrial Biogenesis, Cell Auto-Aggregation, and Biofilm Formation in Porphyromonas gingivalis

نویسندگان

  • Ryota Ikai
  • Yoshiaki Hasegawa
  • Masashi Izumigawa
  • Keiji Nagano
  • Yasuo Yoshida
  • Noriyuki Kitai
  • Richard J. Lamont
  • Fuminobu Yoshimura
  • Yukitaka Murakami
  • Christopher V. Rao
چکیده

Porphyromonas gingivalis, a gram-negative obligate anaerobic bacterium, is considered to be a key pathogen in periodontal disease. The bacterium expresses Mfa1 fimbriae, which are composed of polymers of Mfa1. The minor accessory components Mfa3, Mfa4, and Mfa5 are incorporated into these fimbriae. In this study, we characterized Mfa4 using genetically modified strains. Deficiency in the mfa4 gene decreased, but did not eliminate, expression of Mfa1 fimbriae. However, Mfa3 and Mfa5 were not incorporated because of defects in posttranslational processing and leakage into the culture supernatant, respectively. Furthermore, the mfa4-deficient mutant had an increased tendency to auto-aggregate and form biofilms, reminiscent of a mutant completely lacking Mfa1. Notably, complementation of mfa4 restored expression of structurally intact and functional Mfa1 fimbriae. Taken together, these results indicate that the accessory proteins Mfa3, Mfa4, and Mfa5 are necessary for assembly of Mfa1 fimbriae and regulation of auto-aggregation and biofilm formation of P. gingivalis. In addition, we found that Mfa3 and Mfa4 are processed to maturity by the same RgpA/B protease that processes Mfa1 subunits prior to polymerization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure of the fimbrial protein Mfa4 from Porphyromonas gingivalis in its precursor form: implications for a donor-strand complementation mechanism

Gingivitis and periodontitis are chronic inflammatory diseases that can lead to tooth loss. One of the causes of these diseases is the Gram-negative Porphyromonas gingivalis. This periodontal pathogen is dependent on two fimbriae, FimA and Mfa1, for binding to dental biofilm, salivary proteins, and host cells. These fimbriae are composed of five proteins each, but the fimbriae assembly mechanis...

متن کامل

Tobacco Smoke Augments Porphyromonas gingivalis - Streptococcus gordonii Biofilm Formation

Smoking is responsible for the majority of periodontitis cases in the US and smokers are more susceptible than non-smokers to infection by the periodontal pathogen Porphyromonas gingivalis. P. gingivalis colonization of the oral cavity is dependent upon its interaction with other plaque bacteria, including Streptococcus gordonii. Microarray analysis suggested that exposure of P. gingivalis to c...

متن کامل

Novel fimbrilin PGN_1808 in Porphyromonas gingivalis

Porphyromonas gingivalis, a periodontopathic gram-negative anaerobic bacterium, generally expresses two types of fimbriae, FimA and Mfa1. However, a novel potential fimbrilin, PGN_1808, in P. gingivalis strain ATCC 33277 was recently identified by an in silico structural homology search. In this study, we experimentally examined whether the protein formed a fimbrial structure. Anion-exchange ch...

متن کامل

Structural and functional studies of Porphyromonas gingivalis fimbrial proteins

Porphyromonas gingivalis expresses two forms of fimbriae, FimA and Mfa1. Each fimbria consists of five proteins; FimA-E and Mfa1-5. While the assembly of the type-1 fimbriae from Escherichia coli is well studied; the chaperone-usher pathway, very little is known about the polymerization of P. gingivalis fimbriae. The P. gingivalis fimbrial proteins form lipidated precursors that have an N-termi...

متن کامل

Porphyromonas gingivalis short fimbriae are regulated by a FimS/FimR two-component system

Porphyromonas gingivalis possesses two distinct fimbriae. The long (FimA) fimbriae have been extensively studied. Expression of the fimA gene is tightly controlled by a two-component system (FimS/FimR) through a cascade regulation. The short (Mfa1) fimbriae are less understood. The authors have recently demonstrated that both fimbriae are required for formation of P. gingivalis biofilms. Here, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015